Maximum Trimmed Likelihood Estimator for Categorical Data Analysis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum trimmed likelihood estimator for multivariate mixed continuous and categorical data

Abstract In this article we apply the maximum trimmed likelihood (MTL) approach (Hadi and Luceño 1997) to obtain the robust estimators of multivariate location and shape, especially for data mixed with continuous and categorical variables. The forward search algorithm (Atkinson 1994) is adapted to compute the proposed MTL estimates. A simulation study shows that the proposed estimator outperfor...

متن کامل

Local Maximum Likelihood Techniques with Categorical Data

In this paper we provide asymptotic theory of local maximum likelihood techniques for estimating a regression model where some regressors are discrete. Our methodology and theory are particularly useful for models that give us a likelihood of the unknown functions we can use to identify and estimate the underlying model. This is the case when the conditional density of the variable of interest,...

متن کامل

Lecture 22: Maximum Likelihood Estimator

In the first part of this lecture, we will deal with the consistency and asymptotic distribution of maximum likelihood estimator. The second part of the lecture focuses on signal estimation/tracking. An estimator is said to be consistent if it converges to the quantity being estimated. This section speaks about the consistency of MLE and conditions under which MLE is consistent.

متن کامل

Maximum likelihood estimator for magneto-acoustic localisation

This paper is devoted to the localization of magnetoacoustic sources moving in a straight line at a constant speed. Our technique is based on the association of narrow band acoustic signals and magnetostatic measurements. First of all, we describe features that make possible the association of magnetic and acoustic data, secondly, we show that positioning accuracy is much improved by this assoc...

متن کامل

Robust fitting of mixtures using the trimmed likelihood estimator

The Maximum Likelihood Estimator (MLE) has commonly been used to estimate the unknown parameters in the finite mixture of distributions via the expectationmaximization (EM) algorithm. However, the MLE can be very sensitive to outliers in the data. Various approaches that have incorporated robustness in fitting mixtures and clustering are discussed. Special attention is given to the Weighted Tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2009

ISSN: 2287-7843

DOI: 10.5351/ckss.2009.16.2.229